Generating all the cubic graphs that have a 6-cycle double cover
نویسندگان
چکیده
A cycle double cover (CDC) of an undirected graph is a collection of the graph’s cycles such that every edge of the graph belongs to exactly two cycles. We describe a constructive method for generating all the cubic graphs that have a 6-CDC (a CDC in which every cycle has length 6). We also prove that all such graphs have a Hamiltonian cycle.
منابع مشابه
6-cycle Double Covers of Cubic Graphs
A cycle double cover (CDC) of an undirected graph is a collection of the graph’s cycles such that every edge of the graph belongs to exactly two cycles. We describe a constructive method for generating all the cubic graphs that have a 6-CDC (a CDC in which every cycle has length 6). As an application of the method, we prove that all such graphs have a Hamiltonian cycle. A sense of direction is ...
متن کاملGeneration and properties of snarks
For many of the unsolved problems concerning cycles and matchings in graphs it is known that it is su cient to prove them for snarks, the class of nontrivial 3-regular graphs which cannot be 3-edge coloured. In the rst part of this paper we present a new algorithm for generating all non-isomorphic snarks of a given order. Our implementation of the new algorithm is 14 times faster than previous ...
متن کاملCubic Bridgeless Graphs and Braces
There are many long-standing open problems on cubic bridgeless graphs, for instance, Jaeger’s directed cycle double cover conjecture. On the other hand, many structural properties of braces have been recently discovered. In this work, we bijectively map the cubic bridgeless graphs to braces which we call the hexagon graphs, and explore the structure of hexagon graphs. We show that hexagon graph...
متن کاملEven cycle decompositions of 4-regular graphs and line graphs
An even cycle decomposition of a graph is a partition of its edge into even cycles. We first give some results on the existence of even cycle decomposition in general 4-regular graphs, showing that K5 is not the only graph in this class without such a decomposition. Motivated by connections to the cycle double cover conjecture we go on to consider even cycle decompositions of line graphs of 2-c...
متن کاملDouble covers of cubic graphs with oddness 4
We prove that a cubic 2-connected graph which has a 2-factor containing exactly 4 odd cycles has a cycle double cover. © 2004 Elsevier Inc. All rights reserved. MSC: 05C38; 05C40; 05C70
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 19 شماره
صفحات -
تاریخ انتشار 2005